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Abstract
In this work, the creep behaviour of β-Sn single crystals having different growth
directions under different peak indentation test loads (10, 20, 30, 40, and 50 mN)
was investigated at room temperature during indentation tests. It was found that
a ‘nose’ appears in the unloading segment of the applied indentation test load–
penetration depth curve. When a ‘nose’ occurs, the apparent unloading stiffness
Su, defined as dP/dh, is negative and the reduced modulus can no longer be
calculated from the Oliver–Pharr method (Oliver and Pharr 1992 J. Mater. Res.
7 1564). The ‘nose’ disappears when the load hold before unload is lengthened.
The correction term due to the creep is the ratio of indenter displacement rate at
the end of the load hold to unloading rate (Feng and Ngan 2002 J. Mater. Res. 17
660; Tang and Ngan 2003 J. Mater. Res. 18 1141). Besides, the effect of creep
on contact-depth measurement is considered. Removal of creep effects in both
contact-area and contact stiffness measurement leads to satisfactory prediction
of the dynamic hardness (Hd) and reduced modulus in β-Sn single crystals.
The experimental results reveal that the measured hardness values exhibit a
peak-load dependence, i.e. an indentation size effect (ISE). Such peak-load
dependence is then analysed using the Meyer law, the Hays–Kendall approach,
the proportional specimen resistance (PSR) model, the modified PSR (MPSR)
model, and the Nix–Gao model. As a result, the modified PSR model is found
to be the most effective one for Hd determination of β-Sn single crystals.

(Some figures in this article are in colour only in the electronic version)
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Figure 1. Conical indentation into a half space.

1. Introduction

Indentation experiments have long been used to measure the hardness of materials. Interest
in the indentation test as a means of measuring elastic properties has grown recently with the
development of very low-load, depth-sensing indentation (DSI) or nanoindentation instruments.
These instruments have become a commonly accepted technique for measuring the surface
mechanical properties of materials and allow one to make indentations as shallow as a few
nanometres. One of the most widespread methods in these instruments is that proposed by
Oliver and Pharr (OP) in 1992 [1]. This method has become a standard method in analysis
software of commercially available nanoindenter instruments.

1.1. Oliver–Pharr (OP) method

In the OP method, it is assumed that, during the unloading process, the contact between the
tip and the surface is purely elastic. In elastic modulus measurement, the contact depth, hc, is
calculated using the following equation:

hc = hmax − β
Pmax

Su
(1)

where hmax is the maximum indenter displacement at the onset of unloading, Pmax is the load
before unloading, Su is the contact stiffness at the onset of unloading, and β is a constant
depending on the indenter geometry (β = 0.72 for the Vickers tip). On the other hand,
the reduced modulus, Er, given by equation (2), can be obtained from the classical contact
mechanics results [1]:

Er =
√

π

2

Su√
Ac

(2)

where Ac = f (hc) is the contact area (figure 1). The area of contact at peak load is determined
by the geometry of the indenter and the depth of contact, hc.

1.2. Feng–Ngan (FN) method

Both equations (1) and (2) are based on the assumption that the tip–sample contact is purely
elastic. Unfortunately, in many cases, the contact between the tip and the sample is far from
purely elastic. In this situation, a creep effect during the indentation, even for metals at room
temperature, can be seen. This effect has been reported by many researchers [2–5]. Such a
significant creep effect at the peak load may influence the subsequent unloading behaviour, i.e.,
when the unloading rate is slow. In the extreme case of creep dominating elastic recovery at
the onset of unload, the applied indentation test load–penetration depth curve may even exhibit
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Figure 2. A situation where a nose seen in the unloading curve; the apparent unloading stiffness is
negative.

a ‘nose’ [4, 5]. Figure 2 shows an example of the β-Sn single crystal. When a nose occurs the
apparent unloading contact stiffness will be negative, but even when an obvious nose does not
occur the apparent stiffness may be still a severe overestimation of the true unloading stiffness.
The nose disappears when the unloading rate increased or when the load hold before unload
is lengthened. In this case, the reduced modulus cannot be calculated accurately using the OP
method.

In a recent investigation, Feng and Ngan [4, 6] proposed a simple method to correct for a
measurement of contact stiffness (Su = dP/dh). They showed, assuming linear viscoelasticity,
that in an experiment involving a brief load hold prior to unloading (figure 3) the relationship
between the true (elastic) unloading stiffness Se and the observed unloading stiffness Su is given
by equation (3) [4, 6]:

1

Se
= 1

Su
+ ḣh

|Ṗ | , (3)

where the second term in equation (3) is the correction due to creep and thermal drift. Ṗ is the
unloading rate at the onset of unload. Here, ḣh is the indenter displacement recorded at the end
of the load hold. This term can be calculated by fitting the h(t) curve (t ; time) like that shown
in figure 4 by the following empirical law:

h(t) = hi + β(t − ti )
1/3 + K t (4)

where hi , β , ti , and K are fitting constants. Feng and Ngan [4] showed that if Se is used instead
of Su in equation (2) accurate reduced moduli can be obtained in metallic materials for Cu, Al,
and Ni3Al.

On the other hand, the dynamic hardness, Hd, is usually defined as the ratio of the applied
peak indentation test load, Pmax, to the projected contact area of the hardness impression, Ac.

Hd = Pmax

Ac
= Pmax

26.43h2
c

. (5)
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Figure 3. Removal of nose effect involving a brief load hold prior to unloading.

Figure 4. Penetration depth–time curve of the load-hold process.

1.3. Tang–Ngan (TN) method

Linear viscoelasticity problems are conventionally solved by the correspondence principle
between elasticity and linear viscoelasticity as suggested by Radok [7]. However, for the
indentation problem shown in figure 1 in which the boundary also changes with load, Lee and
Radok [8] have shown that the correspondence principle can give a correct result only when
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the contact size a(t) at time t does not decrease. The indentation problem under a general load
schedule has been solved by Ting [9], whose solution agrees with that of Lee and Radok [8] for
the case of monotonically increasing a(t).

Feng and Ngan [4] are interested in predicting the maximum in a(t) function, i.e., the
nose, and so they can legitimately use the correspondence principle to calculate the increasing
portion of the a(t) function up to the maximum point. Their analysis is based on nondecreasing
a(t). On the other hand, the Feng and Ngan procedure leaves the issue of Ac unaddressed. Tang
and Ngan [10] developed a simple formula that can be used to correct for the creep effects in
the contact depth hc. Their procedure is similar to that used by Oliver and Pharr [1] in deriving
equation (2); the only difference is the addition of the creep term. As a result, they found the
contact depth:

hc = hmax − β
Pmax

Su

(
1 + Su

ḣh

|Ṗ |
)

= hmax − β
Pmax

Se
, (6)

where β = 2(1−2/π) is the same constant as in OP’s results in equation (1), and Se is the same
corrected stiffness as given by Feng and Ngan’s [4, 6] results in equation (3). The correction
formula for the contact depth in equation (6) derived by Tang and Ngan [10] therefore has the
same form as OP’s original equation (1), except that the contact stiffness has to be corrected
for creep using Feng and Ngan’s correction term given in equation (3).

The physical background of applied indentation test load–penetration depth behaviour
of single crystals on a nanometre scale has been a matter of intensive experimental [11, 12]
and theoretical study [13, 14]. On the other hand, in the literature, few studies deal
with the mechanical behaviour of β-Sn single crystals via a conventional experimental
procedure [15, 16]. The DSI method is more precise than the conventional experimental
procedure. We therefore aimed to describe the ISE on the (001) face of β-Sn single crystals
by using the DSI technique and to determine the most suitable model for the estimation of true
hardness to take the creep effect into account.

1.4. Creep behaviour

Among the different characteristics of the soft materials, creep behaviour is of great interest,
mainly due to the need for attaining shape and mechanical properties. Several papers have
addressed the possibility of gaining information on creep properties by the use of indentation or
long time hardness tests [17–19]. The indentation creep test is a very convenient way by which
various creep information can be obtained from a limited supply of material. In these tests,
creep characteristics of materials are investigated through the indentation process, i.e. time-
dependent plastic flow of the material just below the indenter. The indenter maintains its load
over a period of time under well controlled conditions and the changes in the size of indentation
are monitored during the experiment.

The DSI test can be also used to obtain creep data in cases where there is not enough
material available to machine tensile or compression creep specimens or in cases where the
creep properties of small amounts of materials need to be locally assessed. The indentation
creep tests can be performed in two different ways by DSI. (i) The constant rate of loading
(CRL) test is carry out at a prespecified loading rate that is varied from one indentation to
another. This test can be defined as the time-dependent penetration of a hard indenter into the
material under constant load and temperature. (ii) The other process is the loading rate change
(LRC) or rate dependent test (RDT) [20], and the LRC tests are capable of determining the
stress exponent, n, of different materials [21, 22].
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2. Experimental procedure

β-Sn ingots used in this study were of 99.99% purity and were grown in a glass tube at
the rate of 15 mm h−1 using a modified Bridgman method under 10−4 Torr pressure. Their
orientations were determined by the Laue back-reflection method. The sample codes Sn1Y,
Sn2Y, Sn3Y, and Sn4Y were used to refer to single crystals having 4◦, 12◦, 15◦, and 20◦ angles
with the growth direction [110], respectively. Surface damage was removed mechanically by
grinding with 2400 and 4000 grit, and then polishing on 3 and 1 μm diamond lap wheels. To
examine the surfaces, investigations were performed using a JEOL JSM-5400 scanning electron
microscope (SEM). For SEM examinations, the samples were coated with a thin gold layer to
avoid charging effects.

Hardness measurements of β-Sn single crystals were performed with a dynamic ultra-
microhardness tester (Shimadzu, DUH-W201S), having a maximum penetration depth 10 μm
and an indenter shift resolution of 1 nm, at room temperature. A load cell and displacement–
voltage dilatometer (LVDT) were used to control the applied load and to measure the
penetration depth of the indenter. The indentation experiments were performed on the (001)
face for each specimen. For an easier interpretation of mechanical behaviour at various depths,
the maximum load was changed at regular intervals, 10, 20, 30, 40, and 50 mN under a
loading/unloading rate of 4.4130 mN s−1, and the load was held at each maximum value for
300 s. For a particular load at least five indentation tests were conducted on the sample surface
to increase the reliability of the experimental results.

3. Results and discussion

Figure 5 shows the representative applied indentation test load–penetration depth curves for
different indentation test loads measured in the present study. For each record these curves
were analysed using the aforementioned (Oliver–Pharr and Tang–Ngan) procedure. An SEM
image of the residual impression produced by indentation is seen as an inset in figure 5. The
elastic–plastic transition which can be seen in the figure is mentioned in the following section.
Penetration depth dependences of Hd obtained for different oriented β-Sn single crystals are
given in figure 6. The classical ISE was observed in all of the samples that were tested.
The variation of Hd with applied indentation test load for each growth direction shows that
Hd decreases with increasing applied indentation test load, and then reaches saturation at
about 50 mN. The entire Hd profile consists of two regimes for all examined materials: load
dependent (HLD) and load independent (HLI).

As can be seen from figures 3–5, the nose effect disappears with brief load holds prior to
unloading the examined materials. Therefore, the reduced modulus can no longer be calculated
from equation (2). Therefore, the reduced modulus and dynamic hardness of the materials are
calculated by the Feng–Ngan method [4] and the Tang–Ngan [10] procedure. These procedures
involve the correction of both hc and Se for the creep effect.

3.1. Analysis of the ISE behaviour

The ISE has been examined extensively for different kinds of materials. Many attempts have
been made to clarify the load dependence and to develop more or less realistic models to
interpret hardness tests [23–27].

Firstly we used the empirical equation for describing the ISE in the Meyer’s law [28, 29],
which uses a correlation technique between the applied indentation test load and the resultant
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Figure 5. Typical applied indentation test load–penetration depth curves of indentation tests of
β-Sn single crystals (holding time 300 s).

Figure 6. Creep corrected dynamic hardness variation as a function of applied indentation test load
for β-Sn single crystals.

indentation size using a simple power law,

Pmax = Chn
c (7)
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Figure 7. Plots of ln Pmax versus ln hc according to the Meyer’s law.

Table 1. Regression analysis results of experimental data according to equation (7).

Sample code n C (mN μm−n) r2

Sn1Y 1.655 0.197 0.998
Sn2Y 1.669 0.214 0.999
Sn3Y 1.655 0.244 0.999
Sn4Y 1.657 0.257 0.999

where C and n are constants derived directly from curve fitting of the experimental data. In
particular, the exponent n, sometimes referred to as the Meyer index, is usually considered as
a measure of ISE. Compared to the definition of the apparent hardness (equation (7)), no ISE
would be observed for n = 2.

The indentation data for the examined materials in the present study were plotted in
figure 7. The data showed a linear relationship, implying that the traditional Meyer’s law was
suitable for describing the indentation data. Through linear regression analyses, the best-fit
values of the parameters C and n were obtained and the results were summarized in table 1.
The calculated n values pointing out the decrease of dynamic hardness with the increasing
applied indentation test load are in agreement with an ISE (figure 6). However, several
studies [15, 16, 23, 29] have reported that the classic Meyer law is insufficient to describe
the origin of the ISE. Therefore, a new method is needed to achieve a basic understanding of
the ISE.

The experimental data on the dependence of Hd on applied peak indentation test load can
be explained by the Hays–Kendall approach [30]. They proposed that there exists a minimum
applied test load W (test specimen resistance) necessary to initiate plastic deformation, below
which only elastic deformation occurs. On the basis of the hypothesis equation (7) is modified

8
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Figure 8. Plots of Pmax versus h2
c according to the Hays–Kendall model.

to

Peffective = Pmax − W = C1h2
c, (8)

where C1 is a constant independent of the test load and (Pmax − W ) is an effective indentation
load. Replacing Pmax in equation (5) by (Pmax − W ), one gets an equation to calculate the
load-independent (or true) hardness as follows:

HHK = (Pmax − W )

26.43h2
c

= 0.0378
(Pmax − W )

h2
c

= 0.0378C1. (9)

From equation (8), a plot of Pmax versus h2
c would yield a straight line, where W and

C1 parameters can easily be calculated from the intersection point and slope of the curve,
respectively. Such a plot for β-Sn single crystals having different crystal growth directions
considered in the present study is shown in figure 8. From the figure, the W values are 3.486,
3.421, 3.616, and 3.852 mN for Sn1Y, Sn2Y, Sn3Y, and Sn4Y, respectively. The correlation
coefficients for all materials, r 2, are 0.999, implying that equation (8) provides a satisfactory
description of the indentation data for the examined test materials. On the other hand, further
from the magnified applied indentation test load–penetration depth (from figure 5) curve shown
in figure 9, it was found that, with the indentation depth smaller than 0.3 μm, the loading
curve rather matched the elastic unloading curve in accordance with the ‘Hertzian elastic
relation’ [31], revealing the purely elastic response of the β-Sn single crystals without any
plastic deformation under extremely small strain. As the applied indentation test load exceeded
1.1 mN, the curve deviated from the ‘Hertzian response’, after which it was expected that the
stress intensity at the indenter tip had accumulated to the critical shear stress for the plastic
deformation (yielding) of the β-Sn single crystals. Therefore, the minimum load required for
initiating the permanent deformation predicted by the Hays–Kendall approach is too large to
be accepted, invalidating the applicability of this approach in analysing the ISE. As a result,

9
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Figure 9. Magnified applied indentation test load–penetration depth curve for 30 mN load.

one can conclude that the Hays–Kendall approach is not appropriate for describing the ISE
behaviour observed in β-Sn single crystals.

Recently, Li and Bradt [32] have tried to explain the ISE with the aid of their ‘proportional
specimen resistance’ (PSR) model. According to the PSR model, there are two factors
responsible for the decrease in dynamic hardness with increase in load. In this model, the
applied indentation test load, Pmax, is related to the contact depth, hc, as follows:

Pmax/hc = a1 + a2hc, (10)

where the parameters a1 and a2 are constants for a given material. According to the analysis
by Li and Bradt, the parameters a1 and a2 can be related to the elastic and the plastic properties
of the test material, respectively. In particular, a2 is suggested to be a measure of the so-called
‘true hardness, HPSR’. For the indentation test with a Vickers indenter, HPSR can be determined
directly from a2 with

HPSR = (Pmax − a1hc)

26.43h2
c

= a2

26.43
. (11)

According to equation (10), a plot of Pmax/hc versus hc should yield a straight line, where
a1 and a2 parameters can easily be calculated from the intersection point and slope of the
curve, respectively (figure 10). The estimated best-fit values of a1 and a2 parameters and
corresponding HPSR values are listed in table 2.

The PSR model may be considered to be a modified form of the Hays–Kendall approach
to the ISE. The model treats the specimen’s resistance to permanent deformation as a function
of indentation size, rather than constant (i.e. W = a1hc) [32]. Li et al concluded that this
model might provide a satisfactory explanation for the origin of ISE in hardness tests for
different kinds of materials. On the other hand, Quinn and Quinn [33] have recently examined

10
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Figure 10. Plots of Pmax/hc versus hc according to the PSR model.

Table 2. Best-fit results of PSR model according to equation (10).

Sample code a1 (mN μm−1) a2 (mN μm−2) HPSR (MPa) HLI (MPa)

Sn1Y 2.321 1.505 56.942 80.181
Sn2Y 2.282 1.606 60.764 78.896
Sn3Y 2.435 1.608 60.839 77.217
Sn4Y 2.515 1.631 61.710 73.940

the variation of Vickers hardness with applied indentation test load for a variety of ceramic
materials. These researchers observed that such a hardness–load curve exhibited a distinct
transition to a plateau of constant hardness and claimed that such a curve corresponded to the
intrinsic hardness value of the materials. In the present study, figure 2 shows the transition point
(about 50 mN) and corresponding load-independent (HLI) hardness values, 80.181, 78.896,
77.217, and 73.940 MPa for Sn1Y, Sn2Y, Sn3Y, and Sn4Y, respectively. In the light of the Quinn
and Quinn approximation, the load-independent hardness value (HPSR) calculated with the PSR
model (table 2) is far from the intrinsic hardness value for β-Sn single crystals. Therefore, it
may be suggested that the PSR model may also be insufficient to explain the ISE behaviour of
the present β-Sn single crystals.

According to the PSR model, when hc = 0, the test specimen resistance (W = a1hc)

becomes zero. This implies that the minimum applied load needed to produce permanent
deformation is zero for a given material. However, Gong et al reported that this definition is
unreasonable [23]. The test specimen subjected to surface machining and polishing processes
can be considered as a compressed spring rather than stress free material. Hence, they suggested
the modified form of the PSR model, as given in equation (12).

Pmax = a0 + a1hc + a2h2
c, (12)

11
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Figure 11. Plots of Pmax versus hc according to the MPSR model.

Table 3. Best-fit results of MPSR model according to equation (12).

Sample code a0 (mN) a1 (mN μm−1) a2 (mN μm−2) HMPSR (MPa) HLI (MPa)

Sn1Y 2.752 0.465 1.783 67.461 80.181
Sn2Y 1.568 1.193 1.772 67.045 78.896
Sn3Y 1.719 1.240 1.791 67.763 77.217
Sn4Y −0.114 2.608 1.614 61.066 73.940

where a0 is a constant related to the residual surface stresses associated with the surface
machining and polishing and a1 and a2 are the same parameters as given in equation (10).

Similar to the PSR model, the true hardness of the modified PSR model, HMPSR, can be
determined directly from a2 with

HMPSR = (Pmax − a0 − a1hc)

26.43h2
c

= a2

26.43
. (13)

Best-fit values of a0, a1 and a2 parameters estimated from figure 11 and corresponding HMPSR

values are listed in table 3. When we examine table 3 together with table 2, it can be seen
that the HMPSR values (table 3) are closer to plateau values than estimated hardness results
(HPSR) by the PSR model (table 2). Therefore, the MPSR model seems to be more reasonable
than the PSR according to Quinn and Quinn [33]. On the other hand, the a0 parameter given
in equation (12) points out the same physical meaning as the W stated in the Hays–Kendall
model.

Evidently, the a0 value is still too high to characterize the load required to initiate
permanent deformation of the surface (figure 9). In the literature, Peng et al [34] reported a
similar conflict for the a0 parameter. One may therefore recommend that the modified PSR
model may also be inadequate in determination of the threshold load like the Hays–Kendall
model.

12
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Figure 12. Schematic illustration of GND loops [27].

It is accepted that a0 in equation (12) is a specimen constant, rather than a material
constant. This parameter depends not only on the materials properties but also on the surface
finishing process used in the preparation of the specimens. The relatively smaller values of
a0 in table 3 seem to be reasonable estimates of the residual surface stresses for the β-Sn
test specimens, which have been subjected to a careful polishing after machining. On the
other hand, the parameter a1 varies from one crystal growth direction to another. This is
not surprising, since a1 indicates the surface contribution to the indentation hardness. The
differences in the a1 values are in fact related to real differences in the surface contributions to
the indentation hardness for different crystal growth directions [15, 16]. The a2 and HMPSR

values (except for Sn3Y) decrease with decreasing deviation from the [110] crystal growth
direction.

The other model has been developed by Nix and Gao [27], who proposed a mechanism
based theory of strain gradient plasticity (MSG) responsible for the ISE. The MSG theory
assumes that the indentation is accommodated by circular loops of geometrically necessary
dislocations (GNDs) with Burgers vectors normal to the plane surface (figure 12). The model
combines the Taylor relation [35], the Mises flow rule, and the Tabor relation [36] to obtain the
following characteristic expression for the depth dependence of hardness:

H

H0
=

√
1 + h∗

h
. (14)

H is the nominal hardness for a given depth; h and h∗ are characteristic depths which depend on
the shape of the indenter and the material. Finally, H0 can be defined as the hardness that would
arise from the statistically stored dislocations alone, or equivalently the hardness obtained in
the limit for an infinite depth (size independent hardness).

In figure 13, the square of the dynamic hardness value obtained in the indentation tests is
plotted as a function of the reciprocal of the indentation depth. There is a linear relationship
between H 2 and 1/h, in agreement with equation (14). This means that the dynamic hardness
decreases due to the indentation size effect. The values of H0 and h∗ can easily be determined
from the intersection point and the slope of the curve, respectively. Then the relationship
between (H/H0)

2 and 1/h is shown in figure 14. It is almost linear and also consistent well
with reference [27].

The Nix and Gao model can be used to determine the size-independent (load-independent)
dynamic hardness values, HNG, of β-Sn single crystals. The obtained values were 46.626,
50.917, 50.427, and 52.710 MPa for Sn1Y, Sn2Y, Sn3Y, and Sn4Y, respectively. HNG values
(except for Sn3Y) increase with decreasing deviation from the [110] crystal growth direction.
We utilized the PSR (table 2), MPSR (table 3), and Nix–Gao methods to determine the load
independent hardness values of β-Sn single crystals. It can be seen that the HMPSR values are
closer to plateau values than those of the PSR and Nix–Gao methods.

Su, Se, and hc were determined using the OP method and the Tang–Ngan procedure, and
then, using the DSI data, the reduced modulus was calculated. Creep corrected dynamic

13
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Figure 13. The relationship between H 2 and 1/h of β-Sn single crystals.

Figure 14. Application of Nix and Gao model to β-Sn single crystals.

hardness and reduced modulus as a function of the applied indentation test loads are shown
in figures 15(a)–(d). The dynamic hardness and reduced modulus for all crystal growth
directions remained constant at increasing applied indentation test loads, as shown in the
figures. The slight increase in dynamic hardness (ISE) and decrease in reduced modulus at
smaller indentation test loads (reverse indentation size effect; RISE) were due to the indenter tip
roundness and the surface oxidation of the examined materials [2]. Another influence may be
mechanical polishing before the indentation tests of these crystals. Detailed explanations were

14
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(c) (d)

(a) (b)

Figure 15. (a) Creep corrected dynamic hardness and reduced modulus as a function of the applied
indentation test load for Sn1Y. (b) Creep corrected dynamic hardness and reduced modulus as a
function of the applied indentation test load for Sn2Y. (c) Creep corrected dynamic hardness and
reduced modulus as a function of the applied indentation test load for Sn3Y. (d) Creep corrected
dynamic hardness and reduced modulus as a function of the applied indentation test load for Sn4Y.

given in our earlier study [16]. Texture is another source of deviation of reduced modulus.
These materials are highly anisotropic, and because of this it is not clear to what value the
measured modulus should be compared. On the other hand, it can be argued that the most
appropriate modulus is that in the direction of testing, since the elastic displacements are
primarily in this direction. On the other hand, since the formation of the contact impression
involves deformation in many directions, it can be argued that the measured modulus should
be some average quantity [1]. Similarly, Vlassak and Nix [37, 38] investigated the reduced
modulus of cubic crystals at different orientations by indentation. For Cu and β-brass, along {1
1 1} the indentation modulus was found to be 10–25% larger than along {1 0 0}.

On the other hand, the creep corrected reduced modulus remains more or less constant
over the entire range of load. The values are 39.000, 44.100, 39.500, and 43.500 GPa for Sn1Y,
Sn2Y, Sn3Y, and Sn4Y, respectively. Our results are comparable with that of Deng et al, who
obtained the modulus value of pure Sn as 46.9 ± 2.7 GPa using nanoindentation tests [39].

4. Concluding remarks

This paper presents the results of dynamic hardness and reduced modulus on β-Sn single
crystals at various loads using creep curves. The dynamic hardness and reduced modulus of
the crystals were deduced both the OP method and the Tang–Ngan procedure. The conclusions
arising from the work are as follows.
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(1) The reduced modulus calculated using the Oliver–Pharr method becomes negative due
to the occurrence of a nose in the unloading applied indentation load–penetration depth
curve. The nose effect disappears with brief load holds prior to unloading. We therefore
calculated Hd and Er using the OP method and the Tang–Ngan procedure.

(2) In the analysis of the ISE, the classical Meyer’s law may yield a good fit for the measured
indentation data. However, there is no useful information on the origin of the observed ISE
for β-Sn single crystals.

(3) The PSR model can be used to analyse the ISE observed in β-Sn single crystals but it
failed in analysing the reserved ISE behaviour observed in the examined materials, since
the load-independent hardness values are below the plateau region.

(4) The minimum load required for initiating the permanent deformation predicted by the
Hays–Kendall approach is too large to be accepted, invalidating the applicability of this
approach in analysing the ISE.

(5) The calculated load-independent hardness values by the modified PSR model are more
useful than those obtained by the PSR and Nix–Gao models. However, the modified PSR
model may also be insufficient to determine the threshold load to produce initiation of
permanent deformation.

(6) The Nix–Gao model can be used to analyse the ISE. However, the load-independent
hardness values are below the plateau region, the same as the PSR model.

(7) Compared to the Oliver–Pharr method both the Feng–Ngan and Tang–Ngan methods
together seem to work well for Hd and Er calculation of β-Sn single crystals from the
creep curves. Calculated Er values from the latter procedures are consistent with the
literature [39].
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